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Motivation: Building Investment Strategies with Machine Learning

Why machine learning for investment?
e Extracts signals from a large information set;
e Easily captures complex nonlinear relationships among variables;

e Works well out-of-sample and is robust to overfitting.

Best overall prediction # the best input for portfolio creation

Typical machine learning portfolios:
1. Prediction problem: Find signal to predict future returns

— linear regressions,
— machine learning (e.g. deep learning)
2. Portfolio design based on the prediction output
— long-short strategies (highest minus lowest decile, risk factors)

— mean-variance optimization

So far statistics and machine learning often focus unconditionally on step 1.

This paper:
e Extract signal that is optimal for portfolio construction



Asset Pricing for Academics and Practitioners

Two perspectives on the same fundamental problem with the same solution.
e Stochastic Discount Factor (SDF) = optimal portfolio with highest Sharpe
ratio
e Test assets = investment strategies
e Asset pricing model = explains mean returns by exposure to risk factor(s)
e Pricing errors = unexplained performance of investment strategies (alphas)

= This paper constructs the optimal portfolio and asset pricing model
Relevance for academic finance research: Asset pricing (AP)
e Understand source and size of risk premium
e Understand which information is relevant for the explaining average returns
Relevance for Practitioners: Investment

e Optimal portfolios with attractive risk-return trade-off
e Predict returns of assets
e |dentify mispricing = alpha opportunities in markets

e Risk management



Motivation: Asset Pricing

Fundamental Problem of Asset Pricing

e Crucial question in finance:

Why are asset prices different for different assets?
e No-Arbitrage Pricing Theory:

Stochastic discount factor (SDF) explains differences in asset prices.
e Fundamental Question: What is the SDF?

Challenges:

e Big Data: SDF should depend on all available economic information

e Non-parametric: Functional form of SDF is unknown and likely complex

e Dynamics: SDF needs to capture time-variation in economic conditions

e \Weak signal: Risk premium in stock returns has a low signal-to-noise ratio

Can Machine Learning Help?

e Machine-learning methods very flexible and deal with big data, but ...
e Asset returns in efficient markets dominated by unforecastable news
= This paper: Disciplining learning algorithm with no-arbitrage constraint

strongly improves signal



Conceptional Challenges in Asset Pricing

What is the functional form of the SDF based on the information set?
e Conventional example: Fama-French 5 factor model
e Problem: Linear form misspecified, 100 more potential characteristics

e Our solution: General non-parametric model with variable selection

What are the test assets?
e Conventional example: 25 Fama-French double-sorted portfolios
e Problem: Selected SDF might only work on these test assets

e Our solution: All stocks and all possible characteristic based portfolios

What are the states of the economy?

e Conventional example: NBER recession indicators
e Problem: 100 of macroeconomic time-series with complex dynamics

e Our solution: Extract a small number of state processes using complete
dynamics of a large number of macroeconomic time-series



Contribution of this paper

e This Paper: Estimate the SDF with deep neural networks

e Crucial innovation: Include no-arbitrage condition in the neural network
algorithm and combine three neural networks in a novel way

e Key elements of estimator:

1. Non-linearity: Feed-forward network captures non-linearities

2. Time-variation: Recurrent (LSTM) network finds a small set of
economic state processes

3. Pricing all assets: Generative adversarial network identifies the states
and portfolios with most unexplained pricing information

4. Signal-to-noise ratio: No-arbitrage conditions improve the risk

premium signal

= General model that includes all existing models as a special case



Contribution of this paper

1. Empirically outperforms all benchmark models out-of-sample.
e Optimal portfolio has out-of-sample annual Sharpe ratio of 2.6.
e Our model explains 8% of variation in individual stocks
e Our model explain over 90% of average returns for characteristic
managed portfolios
2. Insight into the structure of the SDF
e Non-linear interactions between firm information matter.
e Characteristics in isolation approximately linear.
e Macroeconomic states matter.
e SDF structure stable over time
(25 years of test data without refitting)
e All “classical” firm characteristics relevant with price trends and
trading frictions as the most important
3. Economic constraints matter
e Off-the-shelf machine learning methods perform worse.
e Machine learning combined with economic model structure works

significantly better



Model



The Model: No-Arbitrage Pricing

Fundamental no-arbitrage condition:
Et[Mt+1th+1] =0
forallt=1,...,Tandi=1,...,N

® Rfi.1 = Rit+1 — Rr = excess return at time t + 1 for asset i = 1,..., N
e [5,[.] expected value conditioned on information set at time ¢

e M, 1 stochastic discount factor SDF at time t + 1.
Conditional moments imply infinitely many unconditional moments
E[Mt+1Rte+1.iIf] =0

for any F:-measurable variable /;



Equivalent Factor Model Representation

Without loss of generality SDF is projection on the return space
N

Mipr =1— Z Wf.tRf:t{l

i=1

e SDF portfolio Fri1 = Z,N,l w; +Rf..1 has highest conditional Sharpe-ratio.
e Portfolio weights w; ; are a general function of macro-economic
information /; and firm-specific characteristics /; ;:

Wit = W(/t, l,',t).

= Need non-linear estimator with many explanatory variables!
No-arbitrage condition is equivalent to factor representation:
Rfﬂ = BeFiy1 + €41.
Objects of interest:

e The SDF portfolio F; and its portfolio weights w; ;.

. q cove(RY i 1,Fe1)
e The risk loadings /3;: = W
=

e The unexplained residual & = (Iv — Be—1(B18:—1) 'Bi1) RE.
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Estimation

General Method of Moments Objective (g is given):

i 22 32 MU )R csag (e )P

e Estimate SDF weights w(-) to minimize no-arbitrage moment conditions
for conditioning variables g(/:, /i +).

e We use a feed forward network to estimate w; ; for given g(/s, li+)

e Finance intuition: R 1g(/:, Ii,+) form characteristic managed portfolios
e Example: g might build size/value portfolios as test assets

e Problem of finding optimal “instruments” = choice of test assets

e Problem: Model implies infinite # of moment conditions.
Imposing all is infeasible, hard to know which ones to select.

e Solution: Generative Adversarial Network (GAN) chooses informative g
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Generative Adversarial Network (GAN)

m’Vi’n mgaxz | Zt: M(le, i) RF 18 (1, l,-,t)H2

For a candidate SDF M the adversary g constructs the test assets (and states)
where M has difficulty pricing:
e Two networks play a zero-sum game and are alternative updated:
1. SDF Network constructs SDF the M with smallest pricing errors for g.
2. Conditional Network generates conditioning variables g with largest
pricing errors for M.
e Example: If M is Fama-French 5 SDF, g constructs momentum portfolios.
= Find economic states and test assets with the most pricing information.

11



Generative Adversarial Network (GAN)

m’Vi’n mgaxz | Zt: M1, 1 )R 18 (e, )|

For a candidate SDF M the adversary g constructs the test assets (and states)
where M has difficulty pricing:
e Two networks play a zero-sum game and are alternative updated:
1. SDF Network constructs SDF the M with smallest pricing errors for g.
2. Conditional Network generates conditioning variables g with largest
pricing errors for M.
e Example: If M is Fama-French 5 SDF, g constructs momentum portfolios.
= Find economic states and test assets with the most pricing information.

Econometrics perspective:

e Conventional GMM: optimal instruments based on efficiency.
e Not feasible for large number of potential parameters.
e Assumes test assets identify SDF parameters.
e Our GAN: optimal instruments based on robustness.
e Feasible for large set of instruments and parameters.
e Finds test assets that identify SDF parameters. 11



Macroeconomic Dynamics: Finding Hidden Macroeconomic States

Macroeconomic time-series with standard transformation: S&P500 price/return

S&P 500 A log(S&P 500)
2500 0.1
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0 -0.3
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010

Problems with economic time-series data:

e Time-series data is often non-stationary = transformation necessary
e States depend on dynamics! = last differenced observation uninformative
e Macro time-series strongly dependent = low dimensional structure

Solution: Long-Short-Term Memory (LSTM) Cell Recurrent Neural Network:

e Transform all macroeconomic time-series into a low dimensional vector of
stationary state variables

e Intuition: Non-linear hidden state space model combined with non-linear
factor model

12



Model Architecture

SDF Network:

Update parameters to minimize loss

Feed
Forward

Feed
Forward
Network

| Conditional Network:
Update parameters to maximize loss
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g 1) !

Construct
SDF

Mg

Loss
Calculation

e
t+1

Iterative
Optimizer
with GAN
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Empirical Results




Data

50 years of monthly observations: 01/1967 - 12/2016.
Monthly stock returns for all U.S. securities from CRSP
(around 31,000 stocks)

Use only stocks with with all firm characteristics

(around 10,000 stocks)

46 firm-specific characteristics for each stock and every month
(usual suspects) = /i +

normalized to cross-sectional quantiles

178 macroeconomic variables

(124 from FRED, 46 cross-sectional median time-series for characteristics,
8 from Goyal-Welch) = /;

T-bill rates from Kenneth-French website

Training 20 years, validation 5 years, test 25 years
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Benchmark Models

1. Linear model: SDF portfolio weights w; = /;0 linear in characteristics
Intuition: Mean-variance optimization on characteristic managed
long-short factors Rey1 = I RS, .

LS: Linear regression 0= (R’T R’) o R™1
EN: Elastic net regularization (Kozak, Nagel and Santosh (2019)):

Iprio Llg ﬁ9H2+A 16111 + A2 162
T T 2 1 1 2 2-

min
0

2. FFN: Deep learning return forecasting (Gu, Kelly and Xiu (2019)):
e Predict conditional expected returns E:[R; r1] = B¢ i E¢[Fesa].
e Conditional mean proportional to SDF loading ; ;

Empirical loss function for prediction

N T
1
7 2O (Ruess = (i, 1))

i=1 t=1

Use only simple feedforward network for forecasting

15



Evaluation

Objects of Interest:

e The SDF portfolio F;
e The risk loadings [;
e The unexplained residual & = (Iy — f:—1(8:,_1f:—1) '8, 1)RE

Asset Pricing Performance Measure

E[F¢]
Var(Fr)
1T 1 5N (g 2
(32l & 2@ e)?)
1 T 1 N, 2
(3 2L, & SR 02
15N T a 2
N Zi=1 T (f. ZreT,- ei.t+1)

. ~ 2
158 Tifa )
TN, 7 (F Seer, Rienr)

e Sharpe ratio of SDF portfolio: SR =

e Explained variation: EV =1 —

e Cross-sectional mean R?: XS-R?> =1 —

16



Cross Section of Individual Stock Returns

SR EV Cross-Sectional R?
Model  Train  Valid Test Train  Valid Test Train  Valid Test

LS 1.80 0.58 0.42 0.09 0.03 0.03 0.15 0.00 0.14
EN 1.37 1.15 0.50 0.12 0.05 0.04 0.17 0.02 0.19
FFN 0.45 0.42 0.44 0.11 0.04 0.04 0.14  -0.00 0.15

GAN 2.68 1.43 0.75 0.20 0.09 0.08 0.12 0.01 0.23

e Our model GAN, forecasting FFN, linear EN and LS

e Annual out-of-sample Sharpe ratio SR for GAN 2.6

e GAN explains twice as much (8%) of the variation in individual stocks
e GAN has explains higher fraction of average returns

e Linear model (EN) outperforms forecasting (FFN) = no-arbitrage matters!
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Optimal Portfolio Performance

Cumulative SDF factor returns
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= GAN portfolio outperforms benchmark models
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Performance of Models with Different Macroeconomic Variables

Sharpe Ratio of SDF for different inclusions of macroeconomic information.

Test Validation Training

GAN (hidden state)
UNC

GAN (no macro)
FFN (no macro)
EN (no macro)

LS (no macro)
GAN (all macro)
FFN (all macro)

EN (all macro)

LS (all macro)

0.0 0.2 0.4 0.6 0.0 05 1.0 15 00 05 10 15 20 25

e GAN (hidden states) is our reference model

e no macro uses only firm characteristics

e all macro uses standard transformation of macroeconomic time-series
without LSTM

= Macroeconomic hidden states matter!

19



Predictive Performance
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Cumulative excess returns of [ sorted decile portfolios for GAN

= Risk loadings predict future stock returns.
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Asset Pricing on Sorted Portfolios

oo

(c) EN (d) LS
Predicted and average returns for value weighted characteristic sorted portfolios.
e Out-of-sample results for 46 characteristic sorted decile portfolios
e GAN always has cross-sectional R? > 90% for each 46 decile portfolios
= GAN explains better the cross-section of average returns

21



SDF Factor and Fama-French Factors

| Mkt-RF | SMB | HML | RMW | CMA | intercept

Regression Coefficients 0.00 0.00 -0.04 | 0.08*** 0.04 0.76***
(0.02) | (0.02) | (0.03) | (0.03) | (0.04) | (0.06)
Correlations -0.10 -0.09 0.01 0.17 0.05 -

Out-of-sample correlation and regression of GAN SDF on Fama-French 5 factors.

= Fama-French factors do not span GAN SDF.
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Characteristic Importance

Investment
DPI2A’
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Trading Frictions.

Value

Intangibles

Category

Profitability

Investment

Past Retumns

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.04¢
GAN characteristic importance ranking in terms of average absolute gradient

= Price trends and trading frictions most relevant
= All categories represented among top 20 variables



Characteristic Importance

Trading Frictions.

Value

Intangibles

Category

3
SGA2S Profitability

Investment

bz Past Retums

FFEN characteristic importance ranking in terms of average absolute gradient

= Simple forecasting approach mainly selects price trends, volatility and
illiquidity (consistent with Gu, Kelly and Xiu (2019))
= Does FFN mainly fit illiquid small cap stocks?
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Macroeconomic Hidden States
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GAN Macroeconomic hidden states process. Gray areas mark NBER recession periods. 25



SDF Weights
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SDF weight as a function of size and book to market ratio

SDF weight w as 1-dimensional function keeping other covariates at their mean

= Size and book to market have close to linear effect!



SDF Weights
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Conditional weight as a function of size and book to market ratio

SDF weight w as 2-dimensional function keeping other covariates at their mean

= Complex interaction between multiple variables!




Robustness of Model Fit

1. Market capitalization

e Evaluate and/or estimate models without small cap stocks

e GAN robust qualitatively to removing small cap stocks

e FFN and EN sensitive to removing small cap stocks

= potential overfitting of small, illiquid stocks for FFN and EN

2. Tuning parameters

e Compare GAN models with best validation tuning parameters

e All benchmark criteria essentially identical on test data (A < 3%)
SDF time-series of GAN models highly correlated (around 90%)
Variable importance and SDF weights very similar

3. Time stability

e Fit GAN on rolling window = time-varying SDF weight w:(/:, /i +)
SDF of constant and time-varying GAN strongly correlated (78%)
Variable importance and SDF weights very similar
Slightly better test performance for benchmark criteria (A ~ 10%)

= Robust model fit that captures economic structure
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Conclusion




Conclusion

Methodology

e Novel combination of deep-neural networks to estimate the pricing kernel
e Key innovation: Use no-arbitrage condition as criterion function

e Time-variation explained by macroeconomic states and firm characteristics
e Test assets with most pricing information selected by adversarial approach

e General asset pricing model that includes all other models as special cases
Empirical Results

e GAN outperforms benchmark models.

e Non-linearities matter for the interaction.

e Characteristics in isolation approximately linear.

e Macroeconomic states matter.

e SDF predicts future returns and explains cross-sectional average returns
e SDF structure stable over time.

e SDF efficient portfolio highly profitable.

e GAN framework is complementary to conditional multi-factor models
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Firm specific characteristics

Past Returns Investment Profitability Intangibles Value Trading Frictions
Momentum Investment Operating profitability ~ Accrual Book to Market Ratio Size

Short-term Reversal ~ Net operating assets Profitability Operating accruals Assets to market cap Turnover

Long-term Reversal ~ Change in prop. to assets ~ Sales over assets Operating leverage  Cash to assets Idiosyncratic Volatility
Return 2-1 Net Share Issues Capital turnover Price to cost margin  Cash flow to book value CAPM Beta

Return 12-2 Fixed costs to sales Cashflow to price Residual Variance

Return 36-13

Profit margin
Return on net assets
Return on assets
Return on equity
Expenses to sales
Capital intensity

Dividend to price
Earnings to price
Tobin's Q

Sales to price
Leverage

Total assets

Market Beta

Close to High
Spread

Unexplained Volume
Variance




Literature (Partial List)

e Deep-learning for predicting asset prices
e Gu, Kelly and Xiu (2020)
e Feng, Polson and Xu (2020)
e Bianchi, Biichner and Tamoni (2019)
= Predicting future asset returns with feed forward network
e Neural networks for no-arbitrage pricing
e Bansal and Viswanathan (1993): Non-linear SDF
Deep-learning autoencoder
e Gu, Kelly and Xiu (2020)
e Heaton, Polson and Witte (2017)
= Low dimensional non-linear factor structure

Linear methods for asset pricing of large data sets
e Kelly, Pruitt and Su (2019): Instrumented PCA
e Lettau and Pelger (2020): Risk-premium PCA
e Kozak, Nagel and Santosh (2019): Mean-variance with regularization

Tree-based learning for general non-linear interactions
e Bryzgalova, Pelger and Zhu (2020): Asset-Pricing Trees



Machine Learning Investment: Trading Friction Trade-Offs

0.8
0.7
0.6
05

04
0.3
0.2
0.1
0.0

4l

Out-of-sample Sharpe ratios with trading frictions.
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LME LTurnover

Portfolio weights w set to zero if either the market capitalization (LME) or
turnover (Lturnover) is below a cross-sectional quantile.

Trade-off between trading-frictions and achievable Sharpe ratios (lower bound)

Standard protocol for most machine learning portfolios:
1. Extract signal from predicting returns
2. Form portfolios based on signal (long-short or mean-variance efficient)
This paper: Extract signal for optimal portfolio design.
Next step in Bryzgalova, Pelger and Zhu (2020):
Extract signal for optimal portfolio design under constraints.



SDF Weights
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(a) Size and Book to Market Ratio

(b) Size, Book To Market and Short-Term Reversal

Conditional weight as a function of size and book to market ratio

SDF weight w as 3-dimensional function keeping other covariates at their mean

= Complex interaction between multiple variables!

weight



Optimal Test Assets

Variance

0.005

0.010

0.015

0.020

0.025

Trading Frictions

Value

Intangibles

Profitability

Investment

Past Returns

Category

GAN adversarial characteristic importance ranking with average absolute gradient

= Robust instruments (test assets) include all major categories
= Size and book-to-market not sufficient



Robustness to Market

Number of Stocks

2500

2000

1500

1000

500

Capitalization

no cutoff
LME =0.001%
LME =0.01%

1968

1
1978 1988 1998 2008 2018

Number of stocks per month for

1. the total sample

2. stocks with market cap larger than 0.01% of total market cap.

3. stocks with market cap larger than 0.001% of total market cap.



Robustness to Market Capitalization

SR EV Cross-Sectional R?
Model ~ Train  Valid ~ Test | Train Valid  Test | Train Valid  Test
Size > 0.001% of total market cap
LS 144 031 0.07  0.05 0.14 0.3
EN 093 056 011  0.09 017  0.05
FFN 042 020 [0:30 | 011 o010 [005 | 019 o008 018
GAN 232 109 [041 | 023 o022 [04 | o020 o013 [0126
Size > 0.01% of total market cap
LS 032 -0.11 005 0.7 013 0.5
EN 037 026 009 0.2 017 0.8
FFN 032 017 013 022 022 0.5
GAN 097 054 [0326] | 028 034 [008] | 027 o023 [0582

Different SDF Models Evaluated on Large Market Cap Stocks



Robustness to Market Capitalization

SR EV Cross-Sectional R?
Model  Train  Valid Test Train  Valid Test Train  Valid Test
LS 1.91 0.40 0.19 0.08 0.06 0.04 0.18 0.05 0.12
EN 1.34 0.92 0.42 0.13 0.13 0.07 0.23 0.09 0.19
FFN 0.37 0.19 0.28 0.13 0.13 0.07 0.21 0.10 0.21
GAN 3.57 1.18 0.42 0.24 0.23 0.14 ‘ 0.23 0.13 0.26

Different SDF models estimated and evaluated on large market cap stocks

(size larger than 0.001% of the total market capitalization).



Asset Pricing on Sorted Portfolios

ST.REV  EN FFN  GAN || EN FFN  GAN

Decile Explained Variation H Alpha
1 0.84 074 0.77 -0.18 -0.21 -0.13
2 0.86 0.81 0.82 0.00 -0.05 0.00
3 0.80 0.82 0.84 0.13 0.04 0.06
4 0.69 0.80 0.82 0.16 0.03 0.03
5 0.58 0.68 0.71 0.13 -0.03 -0.04
6 0.43 0.66 0.75 0.22 0.05 0.01
7 0.23 0.64 0.77 0.20 0.03 -0.02
8 -0.07 049 0.67 0.23 0.03 -0.05
9 -0.25 029 0.58 0.30 0.09 -0.01
10 -0.24 -0.04 0.35 0.47 0.38 0.18
Explained Variation Cross-Sectional R?
All 0.43 0.58 0.70 0.45 0.79 0.94

Explained variation and pricing errors for short-term reversal sorted portfolios

e Out-of-sample results for value weighted decile portfolios.
e GAN explains extreme quantiles better



Asset Pricing on Sorted Portfolios

Explained Variation | Cross-Sectional R?

Charact. EN FFN GAN | EN FFN GAN

0.58 0.69 0.78 0.94 0.96 0.95
0.52 0.63 0.73 0.93 0.95 0.96

0.50 0.48 0.69 0.93 0.87 0.96

SGA2S

Y
=2
>

0.46 0.47 0.66 0.90 0.89 0.99

[
M
N
U

Variance 0.48 0.27 0.61 0.74 0.72 0.90

Explained variation and pricing errors for decile sorted portfolios

e Out-of-sample results for all value weighted decile portfolios.
e GAN always explains more variation than other approaches.
o GAN always has cross-sectional R? > 90%.



Sensitivity of Forecasting (FFN) to Size

Quantile SR (Train) SR (Valid) SR (Test)

(i) Equally-Weighted

1% 1.24 0.65 0.66
5% 1.36 1.10 0.71
10% 1.30 1.31 0.67
25% 1.19 1.20 0.57
50% 1.09 1.26 0.52
(i) Value-Weighted
1% 0.98 0.35 0.39
5% 0.89 0.71 0.42
10% 0.70 0.45 0.32
25% 0.55 0.28 0.17
50% 0.43 0.20 0.15

Sharpe Ratio of Long-Short Portfolios with FFN



Risk Measures for SDF Factor

SR Max Loss Max Drawdown

Model  Train  Valid Test Train  Valid Test Train  Valid Test
FF-3 0.27  -0.09 0.19 -245 -2.85 -4.31 7 10 10
FF-5 0.48 0.40 0.22 -2.62 -2.33 -4.90 4 3 7

LS 1.80 0.58 0.42 -1.96 -1.87 -4.99 1 3 4

EN 1.37 1.15 0.50 -2.22  -1.81 -6.18 1 3 5
FFN 0.45 0.42 0.44 -3.30 -4.61 -3.37 6 3 5
GAN 2.68 1.43 0.75 0.38 -0.28 -5.76 0 1 5

= GAN lower or similar risk measured by max loss or drawdown but higher

Sharpe ratio



Turnover

Long Position Short Position

Model  Train  Valid Test | Train Valid Test

LS 025 022 024 | 064 055 061
EN 036 035 035 | 083 083 0.84
FFEN 069 063 065 | 1.38 129 1.27

GAN 0.47 040 040 | 1.05 1.04 1.02

Turnover for positions with positive and negative weighs for the SDF factor portfolio.



Characteristic Importance
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EN characteristic importance ranking in terms of average absolute gradient



Characteristic Importance
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LS characteristic importance ranking in terms of average absolute gradient



Characteristic Importance

Spread
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GAN variable importance ranking of the 178 macroeconomic variables



Performance of Alternative GAN Models

SR EV Cross-Sectional R?
Model Train  Valid Test Train  Valid Test Train  Valid Test
GAN 1 278 147 072 | 018 0.08 0.07 | 012 001 0.21
GAN 2 302 139 077 | 018 0.08 0.07 | 012 000 0.22
GAN 3 255 138 074 | 022 011 009 | 017 0.04 0.25
GAN 4 244 138 077 | 019 008 007 | 011 0.01 0.22
GAN Rolling  N/A  N/A 088 | N/A N/A 008 | N/A N/A 024
GAN No Frict 294 137 077 | 020 010 0.8 | 0.14 0.01 023

Performance for alternative GAN models.

e GAN 1, 2, 3 and 4 are the four best GAN models on the validation data from an
independent re-estimation.

e GAN Rolling is re-estimated every year on a rolling window of 240 months.

e GAN No Frict is estimated without trading frictions and past returns for the
conditioning function g.

= GAN is robust to tuning parameters, time-variation and limits to arbitrage.



Correlation with Alternative GAN Models

GAN GAN1 GAN2 GAN 3 GAN 4 GAN Rolling GAN No Frict

GAN 1 0.84 0.87 0.84 0.80 0.70 0.78
GAN 1 0.84 1 0.88 0.92 0.89 0.79 0.89
GAN 2 0.87 0.88 1 0.87 0.88 0.73 0.83
GAN 3 0.84 0.92 0.87 1 0.89 0.74 0.86
GAN 4 0.80  0.89 0.88 0.89 1 0.78 0.84

GAN Rolling | 0.70  0.79 0.73 0.74 0.78 1 0.78
GAN No Frict | 0.78  0.89 0.83 0.86 0.84 0.78 1

Correlation of Benchmark GAN SDF with SDF of Alternative GAN Estimations.

e GAN 1, 2, 3 and 4 are the four best GAN models on the validation data from an
independent re-estimation.

e GAN Rolling is re-estimated every year on a rolling window of 240 months.

e GAN No Frict is estimated without trading frictions and past returns for the
conditioning function g.

= GAN is robust to tuning parameters, time-variation and limits to arbitrage.



IPCA Asset Pricing with Different SDFs

IPCA assumes a K-factor model where the loadings are a linear function of the
characteristics:

Ri = api+ bl Y + e b= 1"\l

Any multi-factor model assumes that the SDF is spanned by the factors:
K
F=> w (I )T
k=1

Fundamental problem: Find factor weights w’ (I, ;, ;) € R¥ for SDF.

e Combination of GAN and IPCA estimates conditional w"GAN

e Unconditional mean-variance efficient weights
ISR IPCA ¢IPCAT\ 1 IPCA
whSR = Cov (FPSA, AIPCATY TV B [£PTA]

e Alternative constant weights maximize XS-R? or EV: w'*5 and w'EY

= GAN framework is complementary to multi-factor models and can optimally
make use of the additional information incorporated in factors.



IPCA Asset Pricing with Different SDFs

Model Benchmark | 3 4 5 6 7 8 9 10
SR 061 071 077 070 079 082 072 081
IPCA GAN EV 0.05 0.04 004 005 005 005 004 0.05
(w"CAN | gHGANY XS-R? 020 019 017 020 018 020 017 021
SR 069 079 082 084 083 086 08 094
IPCA Max SR FFN Beta | EV 0.04 0.03 003 004 004 004 006 0.03
("SR, gHFFNy XS-R? 0.14 0.3 011 014 014 015 019 0.14
SR 069 079 082 084 083 086 086 094
IPCA Max SR EV 001 001 001 001 001 001 001 001
(@SR, ) XS-R? -0.05 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
SR 011 011 015 017 015 0.15 0.14 0.16
IPCA Max EV EV 0.04 0.04 004 004 004 004 004 004
(WY, B"EY) XS-R? -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03
SR -0.06 0.15 0.12 041 033 037 034 041
IPCA Max XS-R? EV -0.02 -0.01 -0.02 -0.02 -0.02 -0.01 -0.02 -0.02
(WS, XSy XS-R? -0.03 0.07 0.06 012 012 013 013 0.14
SR 069 079 082 084 083 086 08 0.94
IPCA Multifactor EV 0.05 0.05 006 006 006 006 006 0.07
(bt € RF) XS-R? -0.04 -0.03 -0.02 -0.01 -0.02 -0.01 -0.02 -0.02

Out-of-sample asset pricing results for different SDFs based on IPCA



SDF Weights
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SDF weight as a function of short-term reversal and momentum

SDF weight w as 1-dimensional function keeping other covariates at their mean
= Short-term reversal and momentum have close to linear effect!



SDF Weights
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= Complex interaction between multiple variables!



SDF Weights
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Conditional weight as a function of short-term reversal and momentum

SDF weight w as 3-dimensional function keeping other covariates at their mean
= Complex interaction between multiple variables!



SDF Weights
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= Size and dividend yield have close to linear effect!
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Weight as a function of multiple variables

= Complex interaction between multiple variables!



Predictive Performance
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Cumulative excess returns of /3 sorted value weighted portfolios for GAN

= Risk loadings predicts future stock returns.



Predictive Performance

Average Returns H Fama-French 3 H Fama-French 5
Whole Test Whole Test Whole Test
Decile « t @ t « t « t
1 -0.12 -0.02 -0.21  -12.77 -0.13 -5.01 -0.20 -11.99 -0.12 -4.35
2 -0.00 0.05 -0.09 -879 -0.05 -3.22 -0.09 -829 -0.05 -2.68
3 0.04 0.08 -0.04 -518 -0.02 -1.40 -0.04 -487 -0.01 -1.05
4 0.07 0.09 -0.02 -230 -0.00 -0.35 -0.02 -286 -0.01 -0.54
5 0.10 0.12 0.01 2.08 0.03 2.46 0.01 1.36 0.03 2.17
6 0.11 0.12 0.02 2.75 0.03 2.85 0.01 1.51 0.02 2.20
7 0.14 0.15 0.05 6.61 0.05 4.39 0.04 5.16 0.04 3.41
8 0.18 0.18 0.08 9.32 0.08 5.83 0.07 8.05 0.07 4.86
9 0.22 0.21 0.11 9.16 0.11 5.71 0.11 8.58 0.11 5.39
10 0.37 0.37 0.24 10.03 0.25 6.27 0.25 10.43 0.27 6.59
101 048 039 || 045 1850 038 10.14 || 046 1813 039  9.96
GRS Asset Pricing Test GRS p GRS p GRS p GRS
39.72 0.00 11.25  0.00 37.64 0.00 10.75  0.00

Time Series Pricing Errors for 3-Sorted Portfolios

= Standard factor models cannot explain cross-sectional returns of [3-sorted
portfolios.



Asset Pricing on Sorted Portfolios
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Predicted and average excess returns for characteristic sorted decile portfolios.

= GAN explains better the cross-section of average returns
(equally weighted)



Asset Pricing on Sorted Portfolios

LME EN FFN GAN || EN  FFN GAN

Decile  Explained Variation H Alpha
1 0.80 0.75 0.79 0.09 -0.00 0.10
2 0.89 0.89 0.90 -0.11  -0.09 -0.06
3 091 0.80 0.91 -0.07 0.02 -0.02
4 0.90 0.77 0.91 -0.05 0.04 -0.01
5 090 0.78 0.91 0.01 0.10 0.04
6 0.88 0.80 0.91 0.03 0.09 0.02
7 0.84 0.81 0.89 0.04 0.05 -0.01
8 0.84 0.85 0.88 0.06 0.03  -0.02
9 0.77 0.81 0.82 0.06 -0.01 -0.04
10 0.32 0.28 049 -0.04 -0.15 -0.10
Explained Variation Cross-Sectional R?
All 0.83 0.78 0.86 0.96 0.95 0.97

Explained Variation and Pricing Errors for Size Sorted Portfolios



Asset Pricing on Sorted Portfolios

r122 EN FFN GAN || EN FFN GAN

Decile Explained Variation H Alpha
1 0.04 -0.06 0.33 0.37 0.39 0.11
2 0.12 0.10 0.52 0.25 0.18 -0.01
3 0.19 025 0.66 0.14 0.05 -0.06
4 028 034 0.73 0.15 0.08 -0.02
5 0.37 046 0.80 0.19 0.09 0.02
6 045 058 0.78 0.02 -0.03 -0.09
7 0.62 0.69 0.68 0.01 0.01  -0.05
8 0.58 0.71 0.64 -0.03 -0.04 -0.09
9 0.55 0.70 0.58 0.08 0.04 -0.03
10 0.51 053 0.53 024 029 0.19
Explained Variation Cross-Sectional R?
All 0.26 027 0.54 0.66 0.71 0.93

Explained Variation and Pricing Errors for Momentum Sorted Portfolios



Asset Pricing on Sorted Portfolios

BEME EN FFN GAN || EN FFN GAN

Decile Explained Variation H Alpha
1 0.38 0.66 0.70 0.03 -0.12 -0.08
2 0.48 0.73 0.78 0.10 -0.05 -0.04
3 0.71 0.84 0.86 0.07 -0.03 -0.01
4 0.76 0.88 0.89 0.00 -0.07 -0.07
5 0.82 0.87 0.88 0.05 0.02 0.01
6 0.77 0.82 0.88 0.06 0.04  0.02
7 0.81 0.81 0.87 0.03 0.08  0.03
8 0.71 059 0.78 0.03 0.12 0.06
9 0.80 0.72 0.80 -0.02 0.11 0.07
10 0.68 0.73 0.79 -0.05 -0.00 0.00
Explained Variation Cross-Sectional R?
All 0.70 0.75 0.82 0.97 0.94 0.98

Explained Variation and Pricing Errors for Book-to-Market Ratio Sorted Portfolios



Correlation of SDF Factors
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Correlation between SDF Factors for Different Models

= GAN SDF factor has low correlation with the market factor and FFN.
= GAN has highest correlation with its linear special case EN



Simulation Results




Simulation Results - Setup

e Excess returns follow a no-arbitrage model with SDF factor F

e Ja
Ri i1 = BieFer1 + €iea

e The SDF factor: F, =" N(pr,o%) with 02 = 0.1 and SRr = 1.
e The idiosyncratic component: ¢; ; i N(0,02) with 02 = 1.
e N =500 and T = 600. Training/validation/test split is 250,100,250.
Case 1: One characteristic and one macroeconomic state process (LSTM matters):
Bie=CY - blhe),  he = sin(m * t/24) + el

1 if h>0
b(h) = { —1 otherwise.

e Only observe macroeconomic time-series Z; = ppt + hy.

e All innovations are i.i.d.: C-(Vlt) S5 N(0,1) and ¢! ok N(0,0.25).

1
Case 2: Two interacting characteristics (GAN matters):

Bie=cC.c® with W @ p0,1).

it it it it



Simulation Results for Case 1 - Observed Macroeconomic Variable

Observed Macroeconomic Variable




Simulation Results for Case 1- Fitted Macroeconomic State

True Hidden Macroeconomic State
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Fitted Macroeconomic State by LSTM
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Simulation Results for Case 1 - Evaluation

Sharpe Ratio EV Cross-sectional R?
Model Train  Valid Test Train  Valid Test Train  Valid Test
Population  0.89 0.92 0.86 0.18 0.18 0.17 0.19 0.20 0.15
GAN 0.79 0.77 0.64 0.18 0.18 0.17 0.19 0.20 0.15
FFN 0.05 -0.05 0.06 0.02 0.01 0.02 0.01 0.01 0.02
LS 0.12  -0.05 0.10 0.16 0.16 0.15 0.15 0.18 0.14

Performance of Different SDF Models for Case 1.



Simulation for Case 2 - Nonlinear Interaction

SDF weight w with 2 characteristics

«xx§ w:
(a) Population Model (b) GAN




Simulation for Case 2 - Nonlinear Interaction

Sharpe Ratio EV Cross-sectional R?
Model Train  Valid Test Train  Valid Test Train  Valid Test
Population  0.96 1.09 0.94 0.16 0.15 0.17 0.17 0.15 0.17
GAN 0.98 1.11 0.94 0.12 0.11 0.13 0.10 0.09 0.07
FFN 0.94 1.04 0.89 0.05 0.04 0.05 -0.30 -0.09 -0.33
LS 0.07 -0.10 0.01 0.00 0.00 0.00 0.00 0.01 0.01

Performance of Different SDF Models for Case 2



Implementation




Hyper-Parameter Search

Notation ‘ Hyperparameters Candidates Optimal

HL Number of layers in SDF Network 2,3o0r4 2
HU Number of hidden units in SDF Network 64 64
SMV Number of hidden states in SDF Network 4 0r8 4
CSMV Number of hidden states in Conditional Network 16 or 32 32
CHL Number of layers in Conditional Network Oorl 0
CHU Number of hidden units in Conditional Network 4,8, 16 or 32 8

LR Initial learning rate 0.001, 0.0005, 0.001

0.0002 or 0.0001
DR Dropout 0.95 0.95

Selection of Hyperparameters for GAN

1. For each combination of hyperparameters (384 models) we fit the GAN model.
2. We select the five best combinations of hyperparameters on validation data set.

3. For each of the five combinations we fit 9 models with the same hyperparameters
but different initialization.

4. We select the ensemble model with the best performance on validation data set.



Feedforward Network

Inputlayer: x®  Hidden layer:x®  Hidden layer:x®  Hidden layer:x®)  Outputlayer: wi;

Macroeconomic
Tnput: b,

Firm specific
characteristics: I,

Feedforward Network with 3 Hidden Layers

X =ReLU(WI=DTXU=D =1y
y =WOTLO 40



Feedforward Network with Dropout

Input layer: x(®) Hidden layer:x(") Tlidden layer:x(®) Hidden layer:x®  Output layer: wy;

Macroeconomic
Tnput: by

Firm specific
characteristics: I;;

Feedforward Network with 3 Hidden Layers and Dropout



Long-Short-Term-Memory Cell (LSTM)
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Long-Short-Term-Memory Cell (LSTM)



LSTM Cell Structure

At each step, a new memory cell ¢; is created with current input x; and

previous hidden state h;—1
& = tanh(W 9 he_1 + W% + ().

The input and forget gate control the memory cell, while the output gate
controls the amount of information stored in the hidden state:

input, =0 ( ngi)htfl + Wx(i)xt + Wéi))
forget, =0 ( ngf)htq + Wx(f)xt + Wéf))
outy =a( W,Eo)ht,1 + Wx(o)xt + Wéo)).
The final memory cell and hidden state are given by
c: =forget, o c;—1 + input, o &;

he =out, o tanh(ct).



Economic Significance of Variables

e We define the sensitivity of a particular variable as the average absolute
derivative of the weight w with respect to this variable:

Sensitivity(x;) =C Z Z

i=1 t=1

ow(le, It,;) ‘
OXJ ’

where C a normalization constant.

e A sensitivity of value z for a given variable means that the weight w will
approximately change (in magnitude) by zA for a small change of A in
this variable.

= Generalization of linear slope coefficients!
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